<table>
<thead>
<tr>
<th>J.nr.</th>
<th>Title</th>
<th>Course leader</th>
<th>Preliminary ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
</table>
| B69/26 | Flow cytometry | Charlotte Christie Petersen | 2,9 | 1. Understanding the physics behind flow cytometry
2. Understanding the applications and limitations of flow cytometry
3. Practical knowledge and experience with flow cytometry experiment design
4. Understanding essential flow cytometry controls
5. Awareness of common (and not so common) pitfalls
6. Hands-on, practical experience with data analysis
7. Ability to critically evaluate flow cytometry results
8. Requirements for publication of flow cytometry experiments |
| B100/40 | Laboratory animal science | Thea Thougard Johansen/Baretsvikar | 3,9 | The participants should obtain basic knowledge about the Laboratory animal science, which will make it possible for them to participate in research contributing to the humane use of laboratory animals ensuring high standards of animal welfare and quality in the performing, evaluating and reporting of laboratory animal experiments. |
| B102/40 | Advanced laboratory animal science | Martin K. Thomsen | 5 | o Advanced insight into Danish and International legislation concerning animals used for scientific purposes, the ethical aspects of working with laboratory animals as well as the principles of the Three Rs.
o Detailed knowledge of different aspects of ethics and the Three Rs in relation to both ethical and welfare issues raised by the use of animals in scientific procedures.
° Knowledge of experimental design concepts, possible causes and elimination of bias, statistical analysis and information about where expertise can be found to assist with procedure, design, planning and the interpretation of results.
° Insight into the use of animal models in biomedical research and their benefits and limitations.
° Insight into the importance of standardization of environmental, microbiological factors and use of humane endpoints.
° Knowledge about advanced experimental procedures such as microsurgery, anaesthesia, analgesia and euthanasia in rodent laboratory animals.
° Write an application for a procedure to the Danish Ministry of Health. |
| B116/18 | Understanding Neuroscience | Marco Capogna | 2,2 | 1. The role of key brain areas such as the amygdala and cerebral cortex in brain function. This includes learning, spatial and fear memory, motor behaviour.
2. Neuronal development and connectivity.
3. Neuronal communication, synapses transmission and plasticity.
5. Altered neuronal function and connectivity in neurological and psychiatric disorders. |
| B118/12 | Responsible Conduct of Research | Sebastian Frische | 3 | Understand and be able to implement random sampling, systematic sampling and smooth systematic sampling
Understand and be able to implement Cavalieri estimator and nucleator/rotator for volume estimation using section planes
Understand and be able to implement director and fractionator for number/connectivity estimation using section planes
Understand and be able to implement length and surface estimation using isotropic or vertical section planes
Understand the effect of tissue deformation, over- and under projection and a priori on final conclusions |
| C85/20 | Stereology | Jens Randel Nyengaard | 3,5 | Understand and be able to implement random sampling, systematic sampling and smooth systematic sampling
Understand and be able to implement Cavalieri estimator and nucleator/rotator for volume estimation using section planes
Understand and be able to implement director and fractionator for number/connectivity estimation using section planes
Understand and be able to implement length and surface estimation using isotropic or vertical section planes
Understand the effect of tissue deformation, over- and under projection and a priori on final conclusions |
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Course leader</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
</table>
| C104/20 | From Gene to Function – Molecular Analysis of Disease Genes | Peter Bross | 2,9 | • Theoretical assessment of effects of gene variations
• Protein structure, folding and trafficking and their disturbances in diseases
• Methods for experimental investigations of effects of gene variations
• Design and interpretation of cellular and in vitro experiments
• Exercising and developing skills for communicating scientific knowledge |
| C116/15 | Advanced course in laboratory animal science – porcine models in biomedical research | Beigtila Saima Kousholt | 3,7 | • Handle research data in a way that live up to legal- as well as basic scientific requirements
• Relate to the basic principles of data documentation
• Relate to StatA’s user interface and basic functionalities
• Use StatA’s build-in help system
• Build well-structured command-files (“do-files”) to enhance transparency and reproducibility |
| C119/90 | Data management & Stata | Jakob Hjort | 1,4 | After completion, we expect the participant to have gained knowledge within:
1. Regulatory requirements and application requirements
2. Basic concepts of anaesthesia, analgesia and euthanasia of pigs.
3. Basic concepts of surgical instrumentation of pigs and surgical procedures
4. The principles of planning and designing procedures and projects, as well as evaluating studies using live animals, specifically pigs
5. Knowledge on the 3Rs |
| C119/91 | Data management & Stata | Jakob Hjort | 1,4 | See previous course |
| C119/92 | Data management & Stata | Jakob Hjort | 1,4 | See previous course |
| C171/12 | Introduction MATLAB with examples from Health Science | Irene Klaarke Mikkelsen | 2,4 | • Understanding and evaluating meta-analyses
• Conducting systematic reviews
• Assessing heterogeneity between the studies included
• Combining the results from individual studies in a pooled estimate |
| C189/11 | Synthesising Evidence: Meta-Analyses and Systematic Reviews | Olaf Dekkers | 1,4 | Understand the most common radiologic methods
Understand the basic background for methods (physics, instruments)
Characterize risks of the methods
Understand the advantages and disadvantages/limitations of the methods
Obtain inspiration to new methods in research projects |
| C190/25 | Image diagnostic methods for evaluation of the musculoskeletal system | Madsen Stilling | 2,2 | The participants obtain theoretical knowledge and practical skills required for development, troubleshooting, and validation of EUSA and TRIMA assays. |
| C204/11 | From Gene to Function – Molecular Analysis of Disease Genes | Mette Bjerre | 2,7 | At the end of the course you should have learned about and strengthened your awareness of own strengths and challenges to enhance leadership in both work and your everyday life. You should have strengthened your project management skills in order to better control and plan your project and PhD-education with respect to deliverables, milestones and schedules. As a specific outcome all participants will have a plan with deliverables, milestones, and schedules for their PhD project. |
| C205/19 | The Talented Researcher | Kamille Emil Rasmussen | 3 | After the course, the student will be able to:
Understand why we study prognosis
Understand the principles of survival analysis
Know the difference between hypothesis-testing studies and prediction studies
Interpret the result of a Cox regression
Recognize ‘competing risks’ in studies of prognosis |
| C207/25 | Observational epidemiology: studies of prognosis | Peter Jepsen | 1,5 | • Introduction to basic, clinical, qualitative and epidemiological research
• Gain knowledge on writing research protocols
• Gain knowledge on writing successful applications
• Introduction to structured literature search
• Reflections on student-supervisor relationships
• Introduction to ethics and regulations in animal and clinical research |
<p>| C236/20 | Introduction to Research Training in Health Sciences (Students enrolled in the Research Honours Programme and Research Year will be prioritised) | Kristian Keller | 1,4 | |</p>
<table>
<thead>
<tr>
<th>J.nr.</th>
<th>Title</th>
<th>Course leader</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
</table>
| C240/06 | Mindfulness-based interventions in the clinic - background, methods, and applications | Karen Johanne Pallesen | 1,4 | • Describe the historical foundations of modern evidence-based mindfulness-based interventions
• Describe the physiological stress-response and discuss its role in health and disease
• Explain the role of neuroplasticity in psychological interventions
• Describe and discuss the use of evidence-based mindfulness-based interventions in different clinical contexts
• Discuss current findings of changes in brain structure and function
• Debate the quality of a) current mindfulness research, b) formal mindfulness training standards, and c) mindfulness programs available to the public
• Reflect on "best practice" strategies for future implementation of evidence-based mindfulness-based interventions in modern healthcare and society |
| C243/07 | How to get published | Søren Dinesen Østergaard | 3,9 | At the end of the course, the participants should:
• Have a basic knowledge of all aspects of the publication process
• Have improved their writing abilities
• Have learned how to perform peer-review
Altogether, this will increase the participants’ chances of publishing their scientific work. |
| C253/06 | Prepare yourself on the movement from a PhD in Health to a career in non-academia | Vibeke Broe | 3,6 | • Be familiar with basic principles and terms of GMP and its impact in Danish legislation
• Be able to understand and discuss specific challenges arising from GMP
• Know where to seek advice concerning further development of GMP skills |
| C268/04 | Foundations of data-driven health science | Mads Jersven | 2,6 | • Summarise how the main components of a computer relate to, and constrain, the act of "computing"
• Describe the basic organisation of a file system, and navigate it using commands in a "terminal"
• Contrast textual and binary files in terms of their contents and find information in both using tools that can be automated
• Contrast local and non-local computing resources and file systems, and formulate use cases for both
• Use variables in a programming language (python) and perform simple operations (manipulations) on the information (data) they contain
• Write a program to extract, collate and preprocess "raw" data for further processing (statistics, visualisation, etc.). |
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Course leader</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C296/02</td>
<td>Applying clinical epidemiological methods and Danish databases to study chronic disease</td>
<td>Deirdre Cronin Fenton, Mette Nørgaard, Christian F. Christiansen, Reimar W. Thomsen</td>
<td>4.7</td>
<td>The course includes lectures, exercises and computer labs on the following: 1. Identify and design a clinical epidemiologic research study using the Danish databases and registries – comparing and contrasting study designs in order to suitably address a research question. 2. Identifying and ascertaining data from the Danish databases and registries. 3. Assessing study validity and implementing validity checks. 4. Data analysis including data cleaning and implementing survival analysis using Stata. 5. Evaluating study findings, interpreting and reporting study findings.</td>
</tr>
<tr>
<td>C305/01</td>
<td>What is research? Ontology, epistemology and methodology</td>
<td>Rune Dall Jensen</td>
<td>2.4</td>
<td>At the end of the course, students should be able to: 1. Describe the fundamental concepts and positions in the philosophy of science. 2. Articulate the research implications of the various philosophical positions on science. 3. Position one’s research project in a philosophy of science discourse. 4. Formulate research questions, based on various epistemologies.</td>
</tr>
<tr>
<td>P38/22</td>
<td>Epidemiology II</td>
<td>Christina C. Dahm</td>
<td>4.6</td>
<td>The student should be able to: 1. Perform ANOVA, variance component analysis or repeated measurement analysis based on the chosen model. 2. Describe the results of the statistical analysis, and discuss the results in relation to the scientific question. 3. Be aware of the limitations of the statistical methods presented in the course.</td>
</tr>
<tr>
<td>P155/26</td>
<td>Epidemiology I - Basic Principles of Epidemiology</td>
<td>Bodil Hammer Bech</td>
<td>2.8</td>
<td>The student should be able to define epidemiologic measures of occurrence and explain the difference between prevalence and incidence. The student should be able to define the following epidemiologic measures of association; relative risk, risk ratio, odds ratio, and rate ratio, risk difference and excess risk, including attributable risk and population attributable risk. The student should be able to define and describe strengths, weaknesses, and main applications of the designs; ecological, cross-sectional, follow up, case-control and intervention studies. The student should be able to define selection bias, information bias and confounding and be aware that evaluating the direction and strength of a possible bias or confounding is essential. The student should learn to think along the lines that, when faced with data from an analytic epidemiologic study showing an association (or no association), this might reflect; random error, bias (systematic error), including selection bias or information bias, or confounding, or, if all other possibilities seem unlikely, causality.</td>
</tr>
<tr>
<td>P126/17-4</td>
<td>Analysis of variance and repeated measurements</td>
<td>Bo Martin Bibby</td>
<td>3.1</td>
<td>1. Document and process data for a statistical analysis of repeated measurements. 2. Choose a relevant statistical model for a given research question and evaluate the assumptions behind the ANOVA or repeated measurement analysis. 3. Perform ANOVA, variance component analysis or repeated measurement analysis based on the chosen model. 4. Describe the results of the statistical analysis, and discuss the results in relation to the scientific question. 5. Be aware of the limitations of the statistical methods presented in the course.</td>
</tr>
<tr>
<td>P126/17-6</td>
<td>Analysis of variance and repeated measurements</td>
<td>Bo Martin Bibby</td>
<td>3.6</td>
<td>1. Analysis of variance and repeated measurements. 2. Choose a relevant statistical model for a given research question and evaluate the assumptions behind the ANOVA or repeated measurement analysis. 3. Perform ANOVA, variance component analysis or repeated measurement analysis based on the chosen model. 4. Describe the results of the statistical analysis, and discuss the results in relation to the scientific question. 5. Be aware of the limitations of the statistical methods presented in the course.</td>
</tr>
<tr>
<td>F216/05</td>
<td>Nutritional epidemiology</td>
<td>Christina C. Dahm</td>
<td>1.6</td>
<td>The student should be able to: 1. Perform ANOVA, variance component analysis or repeated measurement analysis based on the chosen model. 2. Describe the results of the statistical analysis, and discuss the results in relation to the scientific question. 3. Be aware of the limitations of the statistical methods presented in the course.</td>
</tr>
<tr>
<td>F231/08</td>
<td>Developing and evaluating complex interventions addressing health behaviour change on multiple levels</td>
<td>Helle Terkildsen Maindal</td>
<td>2.0</td>
<td>The student should be able to: 1. Design and implement a complex intervention based on the UK Medical Research Council Model. 2. Use insight into design and conduct of complex interventions addressing co-production. 3. Identify contextual elements that can influence successful behaviour change. 4. Overview of different complex intervention evaluation strategies.</td>
</tr>
<tr>
<td>J.nr.</td>
<td>Title</td>
<td>Course leader</td>
<td>ECTS</td>
<td>Learning outcomes</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------------</td>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| F255/06 | Introductory course in questionnaire technique and clinimetrics | Henrik Hein Lauridsen | 2 | - Have knowledge about conceptualisation and operationalisation
- Know the most important concepts related to questionnaire research
- Know the basics of how to design a questionnaire and write items
- Know the requirements for a questionnaire validation
- Have the skills to find and select the most appropriate outcome measure
- Have the skills to translate an international questionnaire into Danish
- Have basic knowledge of the COSMIN taxonomy, validity and reproducibility
- Have basic knowledge in how to develop a new measurement instrument
- At the end of the course, the PhD student should:
 - Be familiar with the Danish Code of Conduct for Research Integrity as well as Aarhus University guidelines and Health standards of Responsible Conduct of Research
 - Be able to understand and discuss principles of research integrity and responsible conduct of research
 - Be able to identify, analyse and discuss cases of scientific misconduct and questionable research practices in the grey zone between misconduct and poor science
 - Know where to seek advice concerning responsible conduct of research |
| F325/03/38 | Responsible Conduct of Research | Ask Vest Christiansen | 3 | - 1. Document and handle data needed for a statistical analysis
- 2. Choose a relevant statistical model for a given research question and evaluate the assumptions of the statistical analysis
- 3. Perform a statistical analysis based on the chosen model
- 4. Describe the results of the statistical analysis, and discuss the results in relation to the scientific question
- 5. Make simple calculations of sample sizes for the planning of a comparative study
- 6. Summarise the theory and practice of PPI in the research cycle
- 7. Assess different approaches of PPI relevance and applicability in various study designs
- 8. Take an analytical and critical view on the processes and potential outcomes of PPI.
- 10. Create projects
- 11. Describe units of analysis relevant for the students own project
- 12. Critical identity element (sources and cases) as a foundation for making queries
- 13. Create memos, annotations and links
- 14. Know how to use NVivo 12 together with bibliographic software such as Endnote and Refworks
- 15. Code data in relation to different types of qualitative data analysis techniques
- 16. Analyse data, visualise data analysis and make different kinds of queries
- 17. Be able to explain and visualise the data analysis the students use in their own Ph.D. project
- 18. Know how to build models and make different kinds of graphic presentations and diagrams |
| P264/03 | Patient and public involvement in health research | Annesofie Lunde Jensen | 2,8 | - Create projects
- Describe units of analysis relevant for the students own project
- Critical identity element (sources and cases) as a foundation for making queries
- Create memos, annotations and links
- Know how to use NVivo 12 together with bibliographic software such as Endnote and Refworks
- Code data in relation to different types of qualitative data analysis techniques
- Analyse data, visualise data analysis and make different kinds of queries
- Be able to explain and visualise the data analysis the students use in their own Ph.D. project
- Know how to build models and make different kinds of graphic presentations and diagrams |
| F255/06 | Qualitative data analysis: Using NVivo 12 | Annesofie Lunde Jensen | 2,3 | - Describe how Danish health registers and how they can be used in research
- Identify different epidemiological designs used to investigate register data
- Discuss strengths and limitations of register data
- Describe how other sources of data, such as genetic data, cohort data and survey data can complement data in the registers
- Perform simple data management tasks using artificial register data
- Plan their own research using registers or to critically read publications from register-based studies |
| F325/03 | Introduction to register-based research | Natalie Momen og Olequen Plana-Ripoll | 3,6 | - Describe how Danish health registers and how they can be used in research
- Identify different epidemiological designs used to investigate register data
- Discuss strengths and limitations of register data
- Describe how other sources of data, such as genetic data, cohort data and survey data can complement data in the registers
- Perform simple data management tasks using artificial register data
- Plan their own research using registers or to critically read publications from register-based studies |
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Course leader</th>
<th>Preliminary ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
</table>
| A132/22 | PhD supervision (supervisors) + erstatningskurse fra F21 | Mette Krogh Christensen (CESU) | 2,2 | • Identify and apply methodologies in computer-based teaching.
| | | | | Apply rhetoric skills for preparing and delivering research presentations.
| | | | | Use reflective skills in evaluating performance in presenting and teaching at university level.
| | | | | Produce and present effective scientific posters.
| | | | | Apply tools for giving and receiving feedback. |
| A207/22 | Research Presenter - Educational Informatics | Mads Ronald Dahl (CED) | 2,8 | Upon completion of the course, the participant will be able to:
| | | | | • Describe the theory and methodologies of digital competences
| | | | | • Describe introductory elements of Health and eHealth solutions for patients
| | | | | • Use tools to evaluate i.e. apps and web resources
| | | | | • Discuss staging and performing computational thinking at university level
| | | | | • Reflect on own knowledge, use and application of digital competences |
| A209/02 | Future health professionals - digital competences | Mads R. Dahl (CED) | 2,8 | By the end of the course, the participants are able to:
| | | | | • discuss and reflect on requirements and responsibilities of different supervisor and co-supervisor roles;
| | | | | • provide feedback to undergraduate students’ written or oral presentation in a way that facilitate the undergraduate students’ learning process, and
| | | | | • acquire knowledge about undergraduate students’ expectations and interests in order to balance supervisor’s control and undergraduate students’ own control of their projects |
| A209/03 | The PhD-student as supervisor for undergraduate students – how and when? | Mette Krogh Christensen (CED) | 3 | The course is designed as a blended learning approach with a combination of out-of-class online learning and in-class face-to-face teaching. It is estimated to last about 60 hours distributed over five weeks (4x4 hours in-class seminars, approx. 20 hours preparation for in-class seminars, and approx. 24 hours structured online learning activities). The activities will consist of a mix of reading materials, watching videos, producing texts and models, participating in individual as well as group activities in-class and out-of-class, developing lesson plan and teaching portfolios as well as giving peer-feedback. To complete the course and receive ECTS credit and diploma it is mandatory to be active online, and complete all activities (including peer-feedback and portfolio) and respect the activity deadlines. Four learning outcome depends on active participation through peer feedback and discussions with each other. The course is student-centered, why participants will carry out tasks and exercises at in-class and out-of-class activities. |
| A204/03 | The Reflective Teacher | Kamilla Pedersen | 2,4 | To enable the participants to assess the relevance, strengths and weaknesses of different search methods. To enable the participants to build a search strategy and select relevant information sources and search terms. To make the participants familiar with the concept of reference management software in general and EndNote in particular. |
| A150/79 | Struktureret litteratursøgning (FÅ) | AU Library/ Janne Lythof Sørensen | 0,7 | 1. Knowledge about guidelines and conventions governing the structuring of clinical research papers.
| | | | | 2. Knowledge of principles of cohesion and thematic structure in research papers.
| | | | | 3. Knowledge of some of the main differences between English and Danish syntax and grammar.
| | | | | 4. Ability to describe typical structural and linguistic features of poster, abstract and paper.
<p>| | | | | 5. Ability to trace errors of syntax and grammar in English-language texts. |
| A100/85 | Back Course in Written English | Morten Pilegaard | 2,6 | See course description above |
| A100/86 | Back Course in Written English | Morten Pilegaard | 2,6 | See course description above |
| A100/87 | Back Course in Written English | Morten Pilegaard | 2,6 | See course description above |</p>
<table>
<thead>
<tr>
<th>J.nr.</th>
<th>Title</th>
<th>Course leader</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A125/48</td>
<td>Advanced Course in Written English</td>
<td>Morten Pilegaard</td>
<td>2.6</td>
<td>1. Ability to use existing guidelines and conventions governing the structuring of clinical research papers. 2. Ability to analyze and describe typical structural and linguistic features of poster, abstract and paper. 3. Ability to apply principles of cohesion and thematic structuring in own texts. 4. Ability to analyze and produce select test types. 5. Ability to trace and correct errors of composition and grammar in English-language texts.</td>
</tr>
<tr>
<td>A125/49</td>
<td>Advanced Course in Written English</td>
<td>Morten Pilegaard</td>
<td>2.6</td>
<td>See course description above</td>
</tr>
</tbody>
</table>
| A127/15 | Linear regression models for continuous and binary data | Morten Frydenberg | 3.6 | • To enable the participants to perform qualified searches, systematic as well as citation searches, in relevant medical databases.
• To introduce the participants to methods of scientific quality measurements, thus enabling them to understand the basic principles of research evaluation.
• To present a brief overview of different aspects related to research publication such as ORCID, Forskerportalen.dk, Copyright etc.
• To introduce the basic concept of reference management programs in general and - if requested - to make the participants familiar with the specific reference management program EndNote. The lessons will alternate between theory and exercises at the computer. |
| A137/38 | Literature search in medical databases (PhD) | AU Library/Annette Balle Sørensen | 0.7 | At the end of the course, participants should be able to:
- Use RStudio with a better setup to be more efficient in their work
- Version their code with Git to keep track of changes in their code
- Understand more R as a programming language and write better, simpler code
- Manipulate and visualise data with the tidyverse and R Markdown
- Produce efficient R code
- Develop an R package |
| A297/02 | Advanced R course | Florian Franck Privé | 2.4 | The Graduate School of Health wishes to welcome all newly enrolled PhD students to the PhD programme by giving the students an introduction to practical matters related to the PhD study at Health, Aarhus University.
- Use RStudio with a better setup to be more efficient in their work
- Version their code with Git to keep track of changes in their code
- Understand more R as a programming language and write better, simpler code
- Manipulate and visualise data with the tidyverse and R Markdown
- Produce efficient R code
- Develop an R package |
| A1000/80 | Welcome to the PhD study | Forskeruddannelsen | 0 | The Graduate School of Health wishes to welcome all newly enrolled PhD students to the PhD programme by giving the students an introduction to practical matters related to the PhD study at Health, Aarhus University. |
| A1000/81 | Welcome to the PhD study | Forskeruddannelsen | 0 | Case competition skills, methods for defining a relevant unmet need for innovation, methods for generating and validating good ideas, entrepreneurial methods, methods for presentation and pitching, network with people from the industry and interdisciplinary teams. You can attend either the Challenge track (case competition/2 days) or the Innovative Ideas track (presentation and pitching/2 days). Sign up and further information: https://phd.health.au.dk/aboutus/events/mid/ (sign-up open from 1 June 2021) |
| N/A | Medical Innovation Day 2021 – learning activities | Kamille Smidt Rasmussen | 0.8 Innovative Ideas - 1.5 ECTS (Challenge) | Case competition skills, methods for defining a relevant unmet need for innovation, methods for generating and validating good ideas, entrepreneurial methods, methods for presentation and pitching, network with people from the industry and interdisciplinary teams. You can attend either the Challenge track (case competition/2 days) or the Innovative Ideas track (presentation and pitching/2 days). Sign up and further information: https://phd.health.au.dk/aboutus/events/mid/ (sign-up open from 1 June 2021) |